您现在的位置:首页 > 技术文章 > 空气减压阀的结构优缺点

空气减压阀的结构优缺点

  • 发布日期:2018-11-22      浏览次数:1008
    •    随着现代科学技术和现代工业的飞速发展,流过高温流体的管路系统日益增加,高温调节阀的应用越来越广泛。 管路系统的要求及新材料和新工艺的出现,开拓了空气减压阀的应用领域。由于高温条件下材料的各种物理性能、机械性能都将发生变化,致使高温调节阀在结构设计和材料选择上与低温调节阀或调节阀相比具有很大的差别。经过我们的不断研究,总结出了空气减压阀制造中应注意的几个关键问题。
       
        空气减压阀都有流线型的阀体通道,以增加流通能力,阀体内件可以在线更换,在拆去上阀盖就可以取出内件。套筒调节阀的结构特点就是:把含有石棉或者聚四氟乙烯材料的挠性金属垫片放在阀座环和阀体之间,这种垫片也被套筒压住并作为上阀盖和阀座环之间的衬垫。套筒和阀座环有时设计成一体,阀芯则采取圆筒式,流量特性取决于窗口的形状,窗口通常在套筒周围铸成。
       
        阀芯也可以制成有内孔道的空心柱塞,使流体压力能穿过阀芯,在靠近套筒顶端的槽中装有一个滑动密封垫,在阀芯上部封住阀的出口,这种平衡结构有助于抵消作用在阀芯上的流体静压力,导致所需要的执行机构的推力大为减小,但是和双座阀一样,阀座的泄露量有明显的增大。
       
        空气减压阀的特点是便于维修,如果需要,可以在线更换阀内件,不必从管道上拆下阀体,这大大便利了维修工作。
       
        另外还有一种不平衡式套筒调节阀,这里,空气减压阀阀座环内表面有一定的形状,配以盘式阀芯就可以形成一种等百分比的流量特性,并可以倒转180度,把故障时打开,改为故障时关闭的作用方式,这种结构仅仅是阀杆导向,用于浆液介质时,这种套筒调节阀就是一个优势了。
       
        1 材料的机械性能
       
        高温条件下,材料的力学性能将发生明显的变化。主要表现为两个方面,一是强度的改变;二是全属材料的变形性质的变化。图1为碳素钢在不同温度下的强度、塑性、弹性模量和波桑比的指标。
       
        高温条件下材料的硬度也将发生变化,这对于调节阀门密封面来说是很重要的。调节阀的使用温度超过450℃, 设计时还得考虑材料的蠕变和断裂性能。高温条件下受载的阀门零件(应力值大于物理蠕变极限)除发生弹性变形外,还会发生不可回复的蠕变。即使应力低于相应 温度条件下材料的屈服限,也会发生这样的变形。当温度不变时,应力大者蠕变速度大;应力不变时,温度高 者蠕变速度高。由此可见,对于同一种材料,蠕变速度为应力和温度的函数。在高温调节阀制造中,温度是由管路系统的参数决定的,材料的选择又受到介质的腐蚀 性能等条件的限制,所以常常碰到的问题是如何确定许用应力。如果按不发生蠕变的应力水平(物理蠕变极限)为条件设计调节阀的零件,将使得零件重而不经济。 所以在掌握材料的蠕变速度的基础上,要选择一个应力,使得调节阀在正常使用寿命下,总的蠕变不致于发生断裂或不致于因变形妨碍运动件相互间的运动。
       
        空气减压阀应力水平的这择是以保证在使用寿命期内,材料的蠕变不致影响调节阀的使用功能为基本条件的。例如,用于石化高温管路系统的调节阀,要求在20000h内总 的应变值为1%;而核电站用调节阀则要求在300000h内总的应变值为1%。使用寿命不一样的调节阀,设计时应根据各自允许的蠕变速度来选择相应的许用 应力。
       
        高温载荷作用下,调节阀零件的另一种失效形式是断裂。金属抵抗高温断裂的能力用“长用强度”或“持久强度”来衡量,材料的持久强度与使用温度、加力时间及 所受应力的大小有关。图4是铬钼钢的断裂应力与断裂时间的关系。调节阀零件往往会发生这样的情形:工作应力小于蠕变极*,并不发生较大的蠕变,但零件却 在高温载荷下发生了断裂。因此,设计中应比较材料的蠕变性能和断裂性能,选择其中较低的许用应力。
       
        2 热胀量的差别
       
        导致热胀量差别的原因主要有材料热胀系数、零件承受热载的差别和零件所处约束条件的差别,这些差别在高温调节阀制造中应仔细考虑。当热态流体进人一个冷态 调节阀时,阀芯被热态流体所包围,而阀芯的散热仅靠与其相连接的具有较小横截面的阀杆,因此。空气减压阀阀芯能很快地达到管线流体的温度。阀座几乎是与阀芯同时加热 的,因阀座的散热条件较阀芯为好和阀体的线胀量常常小于阀座的径向膨账。其它零件也有类似的情况。因此,用于高温介质下的调节阀零件间的工作间隙应增大, 这样在实际工作温度下,防止了擦伤和卡死。间隙的增加量是由材料的线膨账系数、使用温度、应力等条件决定的。当然对于某些调节阀来说(如柱塞阀)、随着间 隙的增加,使得调节阀的有效使用温域变小,在室温或低温条件下会出现泄漏。
       
        3 热交变的影响
       
        介质的热交变会导致阀座和导向套(过盈配合或螺纹连接)变松,从而失去密封作用。因此,应考虑在阀座或导向套与其相应的支承件的连接处进行封焊或点焊。对于大口径调节阀来说采用本体堆焊阀座。
       
        高温热交变使与介质接触或接近的调节阀零件受到交变应力的作用,空气减压阀加剧调节阀零件的疲劳老化,设计中应认真考虑。热交变工况下密封结构采用弹性阀座,效果较好。